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ABSTRACT D diffuser throat diameter
An interactive inviscid core flow-boundary layer D1-Dp terms in velocity gradient equation
method is presented for the calculation of turbomachine . .
channel flows. For this method, a one-dimensional F entrainment function
inviscid core flow is assumed. The end-wall and blade
surface boundary layers are calculated using an inte- § - 8
gral entrainment method. The boundary layers are Hy shape factor,
assumed to be collateral and thus are two-dimensional. 2
The boundary layer equations are written in a stream-
lTine coordinate system. The streamwise velocity pro- 8
files are approximated by power law profiles. H, shape factor, -—
Compressibility is accounted for in the streamsise 2
direction but not in the normal direction. . .
Equations are derived for the special cases of Ki-K3 terms in area equation

conical and two-dimensional rectangular diffusers.
For these cases, the assumptions of a one—dimensional K¢,Ky curvature terms
core flow and collateral boundary layers are valid.
Results using the method are compared with experiment L diffuser length
and good quantitative agreement is obtained. .

M relative Mach number, W/a
NOMENCLATURE

My wheel speed Mach number, U/a
Ay unblocked flow area = (1 - B) Aq . . .

m exponent in velocity profile
Ag geometric area

m mass flux
A1-A3 terms in velocity gradient equation

P pressure
a speed of sound

Pstp standard pressure, 101 325 N/m
B blockage

Re Reynold's number
b passage height

Rg gas constant
cf skin friction coefficient )

r radius
Cp specific heat at constant pressure

S entropy

p - P1 T
ici — temperature

Cpr pressure recovery coefficient, Plé —~ Pl p

Tstp  standard temperature, 288.2 K



t tangential coordinate

U wheel speed

W relative velocity

X streamline coordinate

y normal coordinate

z blade number

a angle between meridional streamline and
axis of rotation

B angle between relative velocity vector and
meridional plane

Y specific heat ratio

§ boundary layer thickness

)
81 displacement thickness, [
(e}

PN
=

- T) dy
e
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bW W
8 momentum thickness, - |1 -+
2 W we
0

e

[ channel divergence angle

A prewhir]

u coefficient of viscosity

0 density

T shear stress

) entropy function,./; dT
p T

w rotational speed

Subscripts:

A spanwise direction

e edge of boundary layer

r radial direction

t,T tangential direction

W wall

X streamline direction
y normal direction

1 channel inlet

2 channel exit
Superscripts

! absolute total conditions

" relative total conditions

INTRODUCTION

In the preliminary design of turbomachinery it
is necessary to estimate the losses in the individual
components. For rotors, stators and impellers, this
is usually done by using empirical correlations for
channel losses (e.g., skin friction, diffusion, etc.
(1-4)). For diffusers (conical, rectangular) this is
done by empirically relating the diffuser pressure
recovery coefficient to the diffuser geometry and
inlet flow conditions (5,6). A more rigorous way of
estimating these losses would be to calculate the
surface boundary layers and from these obtain a mass-
averaged estimate of channel losses. However, many of
the present methods for calculating boundary layers
(e.g., the code, BLAYER, ref. 7} are not ideally
suited for calculating the boundary layers in turbo-
machine flow channels.

First of all, most boundary layer codes are
written for external flows, thus, they require a
specification of the free-stream velocity distribution.
For internal flows, the velocity distribution is not
known apriori and thus must be determined by an iter-
ative procedure along with the continuity equation for
the assumed inviscid core flow. This can be a very
time consuming procedure especially for preliminary
design calculations where several levels of iteration
must be performed.

Also, most boundary layer codes are written for
two-dimensional flows along flat surfaces and thus
ignore any coordinate curvature terms (i.e., metrics).
This can lead to large errors for some internal chan-
nel fiows in which the channel end walls are converg-
ing or diverging; e.g., nozzles and diffusers.

There have been several methods proposed to cal-
culate the performance of straight-walled, rectangular
type diffusers (8-11). These methods are all two-
dimensional in nature (i.e., they ignore end-wall
effects) and are limited to the computation of incom-
pressible, straight center-line diffuser flows. These
methods are highly developed and predict the perform-
ance of this class of diffusers very well even into
the stalled regions of the diffuser maps. However,
since all these methods are iterative, viscous-
inviscid interaction methods, their running times can
be much longer than that of the method proposed here,
This could make them unsuitable for use in compressor
preliminary design codes.

For these reasons, a noninterative integral-
entrainment method for calculating the flow fields in
turbomachines has been developed. The method simul-
taneously calculates the free-stream velocity distri-
bution from an assumed one-dimensional core flow
continuity equation together with the equations
describing the surface boundary layers. Thus, only
one pass through the flow channel is required thereby
making the method very fast. The primary assumptions
made for the boundary layer calculations are that the
flow is basically two-dimensional and that the bound-
ary layer profile can be described by a power Taw.
The exponent in the power law is allowed to vary as
prescribed by the equations c¢f motion. Compressibil-
ity is accounted for in the streamline direction bhut
not in the direction normal to the flow surfaces.
Turbulent flow is assumed everywhere using the semi-
empirical Ludwieg-Tillman relation for skin friction.
Approximate methods for calculating through regions of
fully-developed or separated flows are also presented.
Comparisons are made with experimental data for the
cases of conical and rectangular diffusers and good
agreement is demonstrated for cases where no separa-
tion is indicated. Fair agreement is demonstrated in
separated regions of the flow.




METHOD OF ANALYSIS

The method of analysis used to calculate the flow
surface boundary layers in the channel is an integral-
entrainment method. The method is similar to that
used for the calculation of end-wall houndary layers
in Ref. 12. For this analysis, the core flow is
assumed to be one-dimensional and is described by the
one-dimensional continuity and momentum equations.

Two-Dimensional Boundary Layer Method )
The following assumptions are made for this
analysis:

(1) The flow is steady and turbulent everywhere

(2) The fluid is a perfect gas

(3) The flow in the bourdary layers is two-
dimensional, i.e., there is no crossflow component of
velocity. Therefore, the boundary layers are also
collateral, i.e., the flow angle, 8, is constant
through the boundary layer.

(4) The channel flow surfaces are adiabatic

(5) There is no density variation in the direc-
tion normal to the channel boundaries although the
density is allowed to vary in the streamline direc-
tion, i.e., p = p(x). This approximation seems to
work well for Mach numbers up to 1.0 and slightly
beyond (12). For high supersonic flows, some other
formulation would have to be used.

(6) The boundary layer velocity profile in the
streamline direction may be described by the power-law
equation

m
- )

where We, &, and m are functions of distance along
a streamline, x, only. The power law approximation
adequately predicts pressure recovery up to separation,
although the actual profile deviates from the power
law approximation more significantly as separation is
approached.

To completely solve the problem, the houndary
layer thickness, &, and the boundary layer exponent,
m, for each surface boundary layer calculated; the
free-stream velocity, We; and the free-stream pres-
sure, density and temperature must be determined.
Thus, a total of (4 + 2n) equations must be solved
where n is the number of surface boundary layers.

If a streamline coordinate system is chosen (with
x in the streamline direction, y in the normal to
the wall direction, and t in the crossflow direction
completing the orthogonal triad), the boundary layer
equations for motion can be written as follows:

Continuity
aloW ) 3(pW )
X Y + = 2
ax 3y * °wx(Ky Ke) =0 (2)
Momentum
oW aW a(re )
X X 2 . __3p,1 X
pWX e + pwy-sy— - prw” sin a €OS B = - o5 * r oy
(3)

Normal Momentum

]
3

E=]
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In Eg. (2), the curvature term, Ky, is defined as the
curvature of the normal coordinate, y, in the

t = constant plane and the curvature term, Ky, is
defined as the curvature of the tangential coordinate,
t, in the y = constant plane. The normal coordinate
is assumed to be everywhere normal to the flow.

If Eqs. (2) and (3) are inteqrated through the
boundary layer with the additional assumption that Ki,
Ky, a, 8 and r are independent of the normal
coordinate, y; the following equations result:

J"s 2 (oW ) fﬁ 2 (oW, ) ( ) f*
—dy ¢+ - dy + (K +K oW dy = 0
o 3X o 3y y t o X

(5)
S §
2
f 3 (oM )
+ + +
A 3% dy pWeWye p(Ky Kt) W dy
0
-prdwzs‘inuCOSB=—6§-E-—'r (6)
ax Xw

Equation (3) can also be evaluated for the isentropic
core flow which results in the following equation

dp dw

e 2 ..
—X=—pNedT+ prw Sin a COS B (7)

One additional unknown was added in the integration of
Eq. (3), i.e., the normal velocity at the edge of the
boundary layer, Wy, as shown in Eq. {6). This can

be modelled using Head's entrainment relation as was
demonstrated in Ref. 12. The resulting relation is
given by

1 ds -0.653
F =E(wed_x.wye>=0.0306 (Hy - 3) (8)

Using the velocity profile from Eq. (1) and performing
the indicated differentiations and integrations,

Egs. (5) to (8) can be combined to yield the following
equations

dW

dm 1 e . F 1+ 2m .
d_X= - Zm(l +m)(1 + Zm)[W—gW‘FK-%G—Lf] (9)

2
l.gﬁ = = ii_:_ﬁﬂl dwe + 1 Qm + (1 +m) E
§ dx ~ Ne dx (T + m) dx §

sin a cos 8, 2
SIS By C (Ky * K (10)

Equations (9) and (10) can be solved if the variation
in free stream velocity, We, is known. A detailed
derivation of equations similar to Egs. (9) and (10}
is shown in the Appendix to Ref. 12.

In order to solve these equations, the skin fric-
tion coefficient, cf, and the entrainment function,
F, must be evaluated. The skin friction coefficient
is obtained from the Ludwieg-Tillman relation which is



-0.268 1561 1

Cf = 0.246 Re52

where Hp =1 + 2m.

The entrainment function is a function only of a
boundary layer shape factor and was shown in Ref. 12
to be given by

0.653
F = 0.0306 <r4¥75 (12)

The variation in the free stream velocity, Wg,
can be determined if a one-dimensional core flow is
assumed. In this case, the velocity can be determined
from the continuity equation for the core flow which
can be written

mn = oW Ay (13)

where Ap represents the unblocked channel area
normal to the flow.

Using the results from Eq. (7) and differentiat-
ing Eq. (13) results in the equation

1 dwe 1

W, dx ~ (

2 .
Mu sin a co0S B 1 dAb

. - (14)
1 - Mg) r Ab dax

The static temperature of the core flow can be
determined from the energy equation for the core flow
which is

W2 (15)
p
where
2
" | 2un - (wr)r
T = Tl-————Zcp (16)

The static pressure and density can then be determined
from either Eq. (7) and the equation of state for the
core flow, or from the isentropic relations for the
core flow. These equations together with Eq. (14),
and Eqs. (9) and (10) written for each boundary layer,
then provide the (4 + 2n) equations needed to solve
the channel flow field.

Fully Developed and Separated Flow

When the boundary layers from opposite walls of
a channel merge, an isentropic core flow no longer
exists and the flow is said to be fully developed. In
this case, the thin shear layer assumption used in the
derivation of Eqs. (2) to (4) is no longer valid.
However, it would be useful to carry out the calcula-
tions after the flow becomes fully developed. In
order to do this, some simplifying assumptions must
be made. These are as follows:

(1) The boundary layer Eqs. (2) to (4) describe
approximately the fully deveioped flow field.

{2) The centerline of the flow remains isentropic.
Although this is consistent with Prandtl's mixing
length theory of turbulence; in reality, it is not
valid due to a nonzero shear stress gradient at the
centerline,

With these assumptions and the fact that the
entrainment function equals zero (as can be seen from

the definition in Eg. {8)), and the boundary layer
thickness equals half the channel height, Egs. (9)
and (14) can be solved as before.

It would also be useful to be able to continue
the calculation beyond an indicated point of houndary
layer separation. This point is usually determined by
a limiting value of the shape factor, Ho = 1 + 2m.
Once again, the boundary layer Eqs. (2} to (4) become
invalid when the boundary layer separates. Also, the
assumed power law profiles cannot accurately describe
a separated flow. However, calculations show that the
pressure recovery and losses can be reasonably pre-
dicted using some simplifying assumptions. These are
as follows:

(1) The boundary layer Eqs. (2) to (4) and power
law profile remain valid for separated flow.

(2) The skin friction coefficient goes to zero.

(3) The entrainment function reaches a limiting
value chosen to be the value at the separation point.

(4) The shape factor is allowed to increase
beyond the separation point.

With these assumptions, the calculations can
proceed beyond points of separation or fully developed
flow.

Loss Calculations

Since the flow is assumed to be two-dimensional,
the losses can be determined by a simple mass averag-
ing procedure. Since the channel exit static pressure
is determined in the solution of the boundary layer
flow, all that is needed is a static enthalpy corre-
sponding to a mass-averaged flow in the channel in
order to calculate the mass-averaged entropy rise from
the equation

Sy = Sy = by = by - Rq In FT (17)
APPLICATIONS OF THE METHOD

The method has been applied to the cases of
conical and rectangular diffusers. In these cases,
the assumptions of a one-dimensional core flow and
collateral boundary layers are valid at least for
nonseparated flows.

Conical Diffuser

The basic geometry of a conical diffuser is shown
in Fig. 1. 1In order to solve Egs. (9), (10} and (14),
the cross-sectional area, Ay, and the curvatures,
Ky, and K¢, must be determined. The flow area is
assumed to lie on a spherical segment as shown which
is approximately everywhere normal to the flow. The
unblocked flow area is then given by

7 !
Ab = 2nx <1 - cos|e - —;) (18)

and the area term in Eq. (14) becomes

dAb ds
1
=% K e (19)
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1 sin ®
Ky = Kt =X =" F (20)
Then for this case, since M, = 0, and
ds
l1_—m ds, 8 dm (21)
dx T T+ mdx (1+ m)z dx
Eq. (14) becomes
dW A
1 e 1 (22)
e OX 1
(2 + 3 Ky8,) 2 > Cf
where A1 = — < 11 2K1m F + Kl(l + 2m) v

2
Dy = (1= M)(1 + Kpey) * 2Kps (1 + m)(1 + 2m)

Equations (9) and (10) complete the system of 3
equations in 3 unknowns (Wa,m,8). The equations are
solved using a fourth-order Runge-Kutta technique (}}).

Results using this method have been compared with
experimental data from a wind-tunnel diffuser section
(14) and with data for conical diffusers (5).

Figures 2 to 4 show comparisons of velocity profiles,
static pressure coefficients, and displacement thick-
nesses at the exit of the cross-leg diffuser of

Ref. 14 for three different inlet Reynold's numbers
and Mach numbers. In all cases the agreement is good.
For these cases, the boundary layers remained attached
according to the analysis. Figures 5(a} to (d) shows
comparisons of pressure recovery coefficient for sev-
eral arbitrary cases of inlet Mach number, blockage,
and cone angle for the conical diffuser data of

Ref. 5. Almost all of the data 1ie in a region where
the flow would be expected to be separated according
to the analysis. However, the agreement between
experiment and analysis is still fair.

Rectangular Diffuser

The geometry for a rectangular diffuser is shown
in Fig. 6. For this case, the boundary layers in the
tangential {blade to blade) and spanwise (hub to
shroud) directions cannot be assumed to be equal due
to the fact that the initial boundary layer thick-
nesses may be unequal and the flow may become fully
developed in one direction only. Thus, the tangential
and spanwise boundary layers must be calculated sepa-
rately. However, the core flow is still assumed to
be one-dimensional.

The unblocked flow area for this case is given by

Ap = (b - 257p)(206x - 2817) (23)
and the term in Eq. (12) becomes

dAb ds ds

(24)

where

2
Ky = (b = ?alA)
K. - 1
2= Tex - 51T$
Ko = 9
3 % Tox - SlT;

The curvature terms for the tangential boundary layers
are given by

1

The curvature terms for the spanwise boundary layers
are given by

. 1
K. =0; Kt =3 (26)
Equation (14) can then be expressed

1 M AP rA A

3
O o Pt 27)
e 9% 1 * 2 (
where A, = ~2KmoFo - 2K miF
1 = ~<foMyly 1™a" A
K K
K 2 1
A2 = _5'(1 + ZmT) Cer + ?—-(1 + ZmA )cfA
17 51a
Ay = Ky =Ky 5= - Ky
Dy = (1= M)(1+ Kooy + Kys,)
1 e 2817 T Kida

D2 = 2K261T(1 + mT)(l + ZmT) + 2K161A(l + mA)(l + 2nh)

Equations (9) and (10) written for both the tangential
and spanwise boundary layers then complete the system
of 5 equations in 5 unknowns (We,ma,8a,mr,87).

Results using this method have been compared
with experimental data for rectangular diffusers (6).
A comparison of calculated and experimental pressure
coefficients for several arbitrary cases of inlet Mach
number, blockage, and divergence angle, 6, is shown
in Fig. 7(a) to (d). The cases shown correspond to an
inlet aspect ratio of one; however, the method is
applicable for any arbitrary inlet aspect ratio. The
cases were calculated assuming equal boundary layer
thicknesses and exponents on the inlet vane surfaces
and end walls. The results show fair agreement
between calculation and experiment even though the
calculations indicate that almost all of the data
shown 1ie in a region where the flow would be
separated.

CONCLUSIONS

An analytical method has been developed to cal-
culate boundary layers and losses in turbomachine
flow channels. Results using this method have been
compared with experimental data for the special cases
of conical and rectangular diffusers. Good anreement
is demonstrated for the flow regimes where the anal-
ysis indicates no separation. Fair agreement is




demonstrated for the pressure coefficients calculated
in the separated regions of the flow.

Since the method is a noninterative integral

method, it is very fast compared to other methods of

analysis.

Thus, it can be easily adapted for use in

preliminary design or off-design codes for turbo-
machinery components.
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FIGURE 1.- CONICAL DIFFUSER GEOMETRY.
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